Measurement System Analysis

Group

Become Future Fit

You will learn

Role of Measurement Variation

Types of Measurement System Analysis

Level of Difficulty

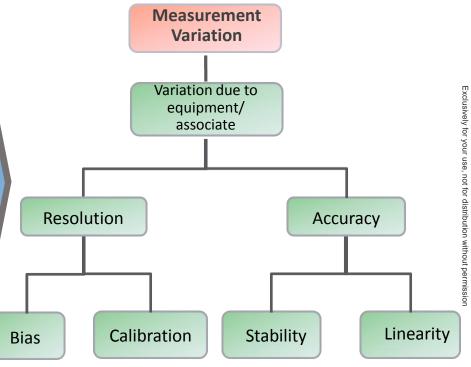
Considered as a tool relevant only to manufacturing

Measurement System Analysis

Quick Check:

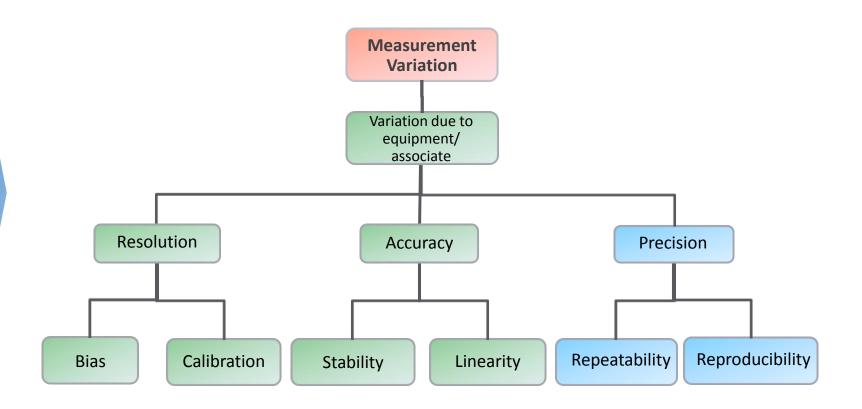
- Is there any data collection happening?
- Is the source providing you correct data?
- Is anyone handling the data causing variation?
- Is there an agreement on the definition of the data?

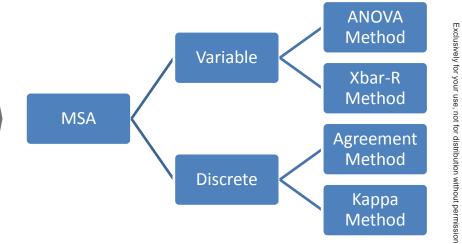
At times, automated Data

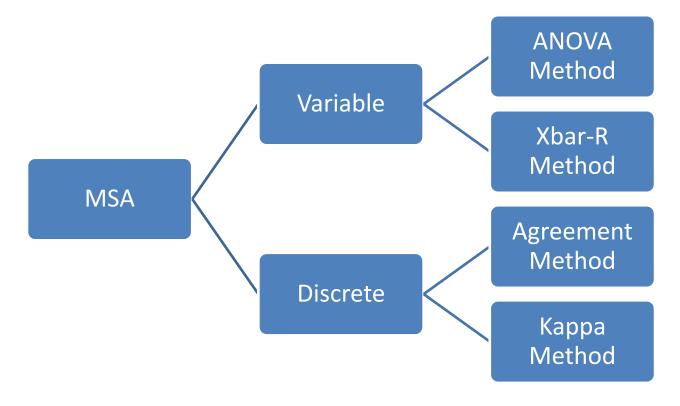

Source, can be a Curse!

$$\sigma^2$$
Observed Process = σ^2 Actua I Process + σ^2 Measurement System

$$\sigma^2$$
 Measuremen t System $=\sigma^2$ Re peatabilit $y+\sigma^2$ Re producibil ity






Measurement Attributes

Types of MSA

Variable MSA Overview

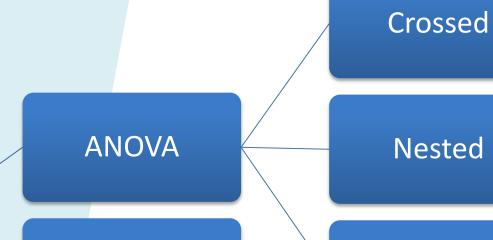
roup

Become Future Fit

Level of Difficulty

Measurement of Weight

- There are field complaints about variation in weight of packets of fruit drink.
 Currently fruit drink packets are filled by automated machines and manually sampled by 3 Quality Control personnel using weighing gages. They are the gatekeepers for quality.
- In order to ensure that the measurement system which consist of the weighing gage, samples, appraiser & environment, all are consistent & produce precise measurement, a continuous GR&R is performed.
- Process tolerance is 800 gms and 900 gms
- 10 samples are collected & given to 3 appraisers at different points in time for measurement. In the same manner, there are 2 trials performed.



Continuous MSA

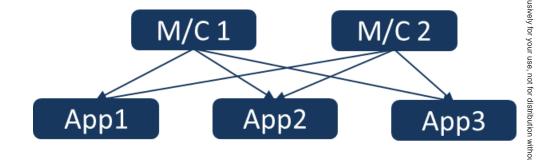
- Wrong data measurement means wrong data & so wrong decisions
- Validates the overall effectiveness of people in using a measurement system, as well as precision of measurement system
- Upkeeping quality standards

X-bar R

Expanded

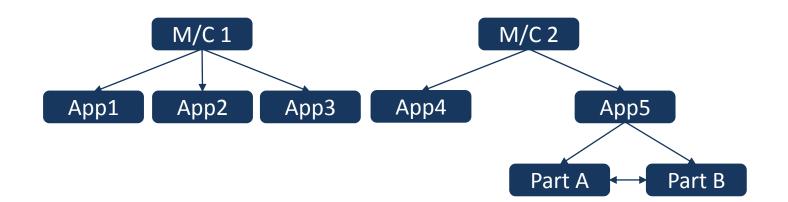
Xbar-R Gage R&R

- Measures variation between
 measurements of an operator to
 assess repeatability
- Cannot calculate Operator-Part variation



ANOVA Gage R&R

- Uses ANOVA method to study the components of variance
- Estimates of variance are more accurate than Xbar-R method



- Each appraiser measures a given part more than once.
- Used to study the contribution of total measurement variation to process variation
- Two factors involved in the study (Machine and Appraiser)

- · Each appraiser measures a given part only once.
- Scenarios involving destructive testing or Machines in different locations.
- Two factors involved in the study (Machine and Appraiser)

- Design is unbalanced (we don't have equal trials)
- Factors involved in greater than 2 (for example mating parts measurement)

Understanding Variable MSA terms

śroup

Become Future Fit

You will learn

Understand the various terms used in Variable ANOVA GRR

Level of Difficulty

- Addresses the percentage of observed process variation taken up by measurement error
- Is the best estimate of the effect of measurement systems on the validity of process improvement studies
- Includes both repeatability & reproducibility
- Target for %GR&R < 30%

$$\%GR \& R = \frac{\sigma_{MS}}{\sigma_{ObservedTotalVariation}} \times 100$$

- Gives contribution of measurement system variability to overall variability
- Also referred to as %TV

- Best Case: < 1 %.
- Marginal Values: Between 1-9 %
- Non-acceptable Values: > 9%

$$\%Contribution = \frac{\sigma^2 MS}{\sigma^2 Total}$$

- Precision directly proportional to measurement system variation
- Usually taken as 6 times the variation (but traditionally 5.15 times – 99%)

$$P = 6 \times \sqrt{\sigma^2_{MS}}$$

- Precision to Tolerance Ratio (P/T)
- Addresses the percentage of tolerance taken up by measurement error
- Includes both repeatability and reproducibility

• Best case: 10% Acceptable: 30%

$$P/T = \frac{6*\sigma_{MS}}{Tolerance}$$

- A measure of the resolution
- Number of distinct categories within the process data that a measurement system can discern
- Best case: > 4
- Acceptable: 3 4

No. of Distinct Categories =
$$\frac{\sigma_{Parts}}{\sigma_{MS}^2} \times \sqrt{2}$$

Performing Variable MSA

iroup

Become Future Fit

You will learn

How to perform ANOVA Variable GRR and interpret the results?

Level of Difficulty

- Parts should cover the entire specification range
- Appraisers should be involved daily measurement
- Randomize the order
- Retain the parts/documents even after measurement

Setting up Experiment
Worksheet in Minitab

Collect the data

Running the ANOVA analysis in Minitab

Minitab Session Output Screen

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	Р
Part	9	0.0843958	0.0093773	339.872	0.000
Appraiser	2	0.0003670	0.0001835	6.651	0.007
Part * Appraiser	18	0.0004966	0.0000276	0.840	0.645
Repeatability	30	0.0009855	0.0000328		
Total	59	0.0862450			

 α to remove interaction term = 0.05

Two-Way ANOVA Table Without Interaction

Source	DF	SS	MS	F	Р
Part	9	0.0843958	0.0093773	303.691	0.000
Appraiser	2	0.0003670	0.0001835	5.943	0.005
Repeatability	48	0.0014821	0.0000309		
Total	59	0.0862450			

Gage R&R

Variance Components

		%Contribution
Source	VarComp	(of VarComp)
Total Gage R&R	0.0000385	2.41
Repeatability	0.0000309	1.93
Reproducibility	0.0000076	0.48
Appraiser	0.0000076	0.48
Part-To-Part	0.0015577	97.59
Total Variation	0.0015962	100.00

K

P is the probability that the associated source is not a statistically significant cause of total variation

Here, Part & Appraiser are significant contributors

Gage R&R Study - ANOVA Method

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	Р
Part	9	0.0843958	0.0093773	339.872	0.000
Appraiser	2	0.0003670	0.0001835	6.651	0.007
Part * Appraiser	18	0.0004966	0.0000276	0.840	0.645
Repeatability	30	0.0009855	0.0000328		
Total	59	0.0862450			

 α to remove interaction term = 0.05

Two-Way ANOVA Table Without Interaction

Source	DF	SS	MS	F	Р
Part	9	0.0843958	0.0093773	303.691	0.000
Appraiser	2	0.0003670	0.0001835	5.943	0.005
Repeatability	48	0.0014821	0.0000309		
Total	59	0.0862450			

Gage R&R

Variance Components

		%Contribution
Source	VarComp	(of VarComp)
Total Gage R&R	0.0000385	2.41
Repeatability	0.0000309	1.93
Reproducibility	0.0000076	0.48
Appraiser	0.0000076	0.48
Part-To-Part	0.0015577	97.59
Total Variation	0.0015962	100.00

 $\frac{\sigma^2_{MS}}{\sigma^2_{Total}}$ %

% Contribution should be less than 1% for the Gage to be acceptable

In this case, as % Contribution is 2.4%, the gage is provisionally acceptable

Process tolerance = 0.1

%GR&R

de

P/T

Gage Evaluation

				•
		Study Var	%Study Var	%Tolerance
Source	StdDev (SD)	(6 × SD)	(%SV)	(SV/Toler)
Total Gage R&R	0.0062056	0.037234	15.53	37.23
Repeatability	0.0055568	0.033341	13.91	33.34
Reproducibility	0.0027626	0.016576	6.91	16.58
Appraiser	0.0027626	0.016576	6.91	16.58
Part-To-Part	0.0394682	0.236809	98.79	236.81
Total Variation	0.0399531	0.239719	100.00	239.72

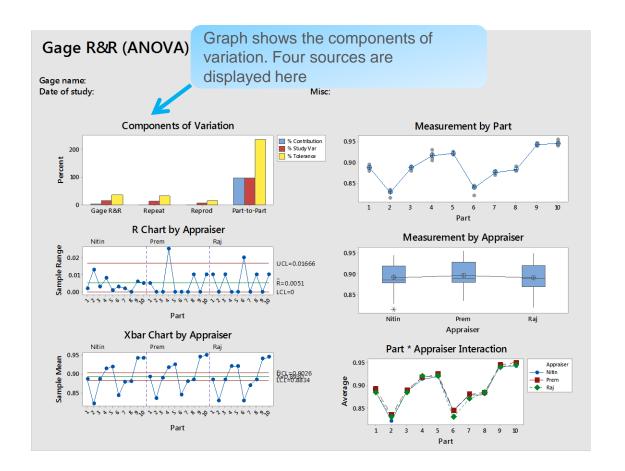
%GR&R & P/T should be less than 10% for the Gage to be acceptable

In this case, though the %GR&R is provisionally acceptable, the P/T ratio is higher than 30 %. Hence this gage is not acceptable

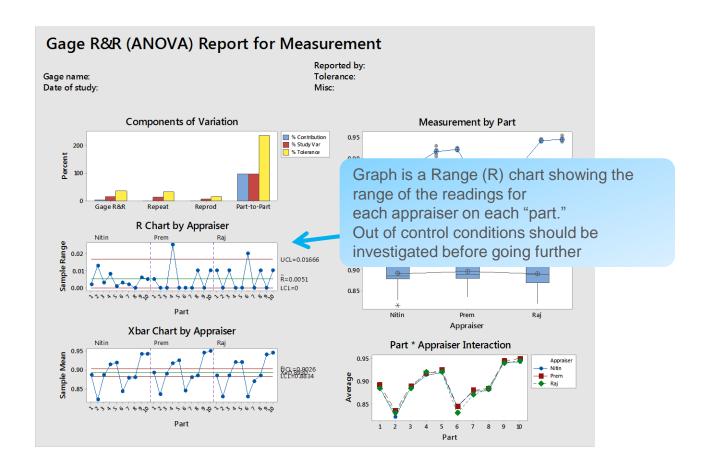
Process tolerance = 0.1

Gage Evaluation

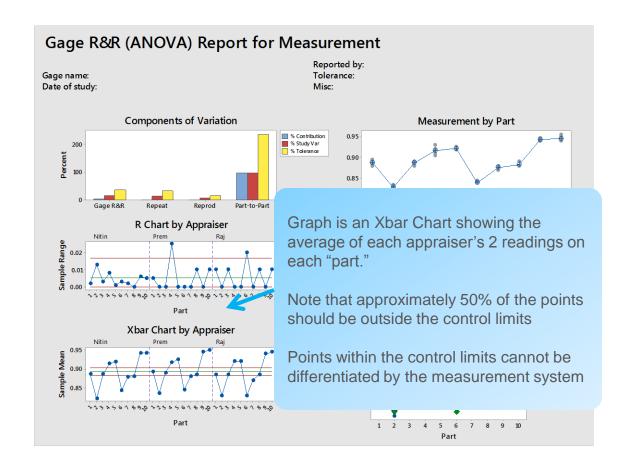
		Study Var	%Study Var	%Tolerance
Source	StdDev (SD)	(6 × SD)	(%SV)	(SV/Toler)
Total Gage R&R	0.0062056	0.037234	15.53	37.23
Repeatability	0.0055568	0.033341	13.91	33.34
Reproducibility	0.0027626	0.016576	6.91	16.58
Appraiser	0.0027626	0.016576	6.91	16.58
Part-To-Part	0.0394682	0.236809	98.79	236.81
Total Variation	0.0399531	0.239719	100.00	239.72

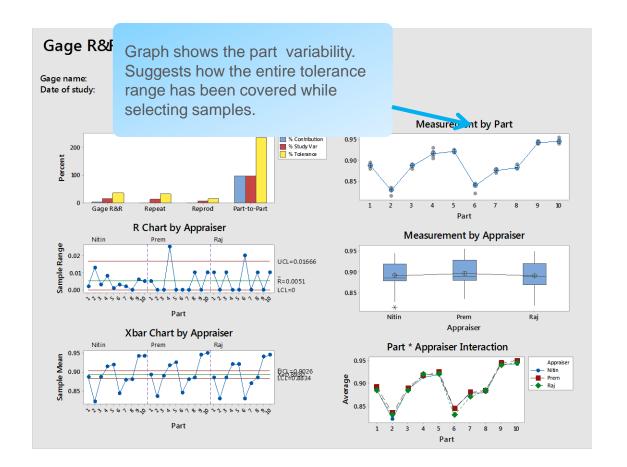

Number of Distinct Categories = 8

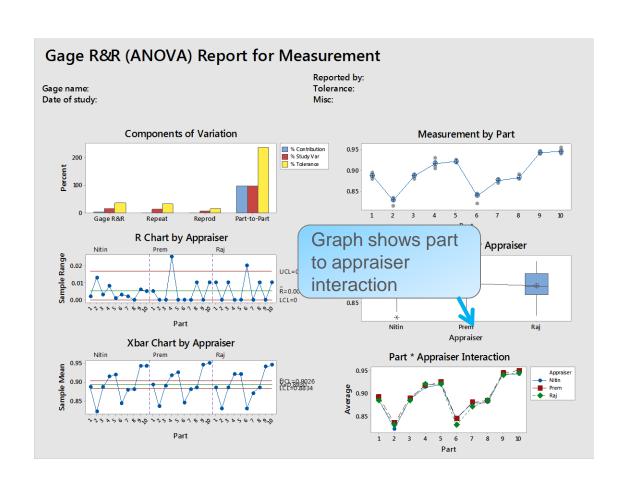
No of Distinct Categories

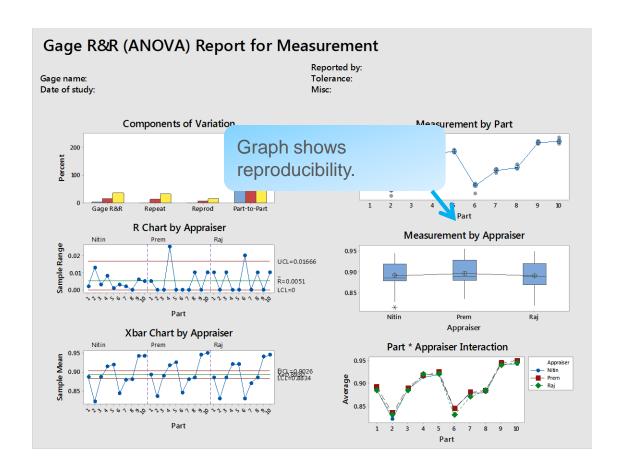

No. of distinct categories should be greater than 4 for the Gage to be acceptable

In this case, this gage is acceptable









R&R improvement strategy

- 1. If a gage is deemed incapable for its application:
 - Team must review design of gage to improve intended application and ability to measure critical steps correctly
- 2. If recalibration is required recalibration steps should be followed
- 3. If Equipment Variation is large compared to Appraiser Variation:
 - Instrument needs maintenance gage should be redesigned
 - Location for gaging needs improvement
 - Excessive within-part variation
- 4. If Appraiser Variation is large compared to Equipment Variation:
 - Inadequate training on gage
 - Calibrations are not effective
 - Fixture may be needed to help use the gage more correctly

Discrete MSA – Agreements & Kappa

oup

Become Future Fit

Learn to perform discrete MSA using

Agreement & Kappa Method

Level of Difficulty

Transactions are received and grouped as 'complete' or 'incomplete' based on the details it contains to process it.

A team of reviewers usually classify them and forward it to respective teams. If done incorrectly, the processing teams would face delivery & capacity issues.

Two reviewers are put through Discrete GRR Evaluation.

Criteria for Discrete MSA

Gage R&R is less than 10 %

Go ahead, you have clean gage

Gage R&R is within 10 – 30 %

Measurement system has fallacies Go ahead with caution

Gage R&R is more than 30 %

Not acceptable. Hold and find out reasons for the measurement issues, fix and then proceed. Alternatively change the measurement system

Transactions are grouped received and grouped into 3 buckets (High, Medium and Low) based on the time it would take to process it.

A team of reviewers usually classify them and forward it to respective teams. If done incorrectly, the processing teams would face delivery & capacity issues.

Two reviewers are put through Discrete GRR Evaluation.

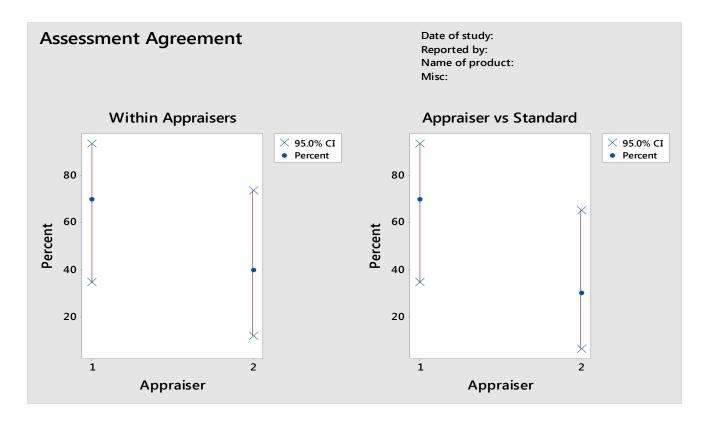
Cohen's Kappa can

- Kappa Coefficient measures the agreement between the evaluations of two appraisers when both are rating the same object.
- It is the ratio of the proportion of times that the appraisers agree (corrected for chance agreement) to the maximum proportion of times that the appraisers could agree (corrected for chance agreement).

(Cohen's) kappa Computation :
$$kappa = \frac{p_o - p_e}{1 - p_e}$$

Actual Agreement p_o = the sum of the observed proportions in the diagonal cells

Chance Agreement p_o = the sum of the expected proportion in the diagonal cells


Kappa Interpretation

Kappa values range from -1 to +1.

Kappa Value	Interpretation	
= 1.00	Indicates perfect agreement	
> 0.75	Indicates good to excellent agreement	
< 0.4	Indicates poor agreement	
= 0.00	Indicates no agreement	

Within Appraisers

Assessment Agreement

Appraiser	# Inspected	# Matched	Percent	95% CI
1	10	7	70.00	(34.75, 93.33)
2	10	4	40.00	(12.16, 73.76)

[#] Matched: Appraiser agrees with him/herself across trials.

Cohen's Kappa Statistics

Appraiser	Response	Карра	SE Kappa	Z	P(vs > 0)
1	High	0.545455	0.281672	1.93649	0.0264
	Low	0.545455	0.281672	1.93649	0.0264
	Medium	0.583333	0.316228	1.84466	0.0325
	Overall	0.558824	0.207139	2.69782	0.0035
2	High	0.200000	0.289828	0.69007	0.2451
	Low	-0.086957	0.308665	-0.28172	0.6109
	Medium	0.285714	0.221313	1.29099	0.0984
	Overall	0.130435	0.195572	0.66694	0.2524

Each Appraiser vs Standard

Assessment Agreement

Appraiser	# Inspected	# Matched	Percent	95% CI
1	10	7	70.00	(34.75, 93.33)
2	10	3	30.00	(6.67, 65.25)

[#] Matched: Appraiser's assessment across trials agrees with the known standard.

Cohen's Kappa Statistics

Appraiser	Response	Карра	SE Kappa	Z	P(vs > 0)
1	High	0.759725	0.216996	3.50110	0.0002
	Low	0.542334	0.216996	2.49928	0.0062
	Medium	0.791667	0.223607	3.54044	0.0002
	Overall	0.696970	0.156582	4.45115	0.0000
2	High	0.123810	0.214476	0.57726	0.2819
	Low	0.435818	0.220949	1.97248	0.0243
	Medium	0.434524	0.192989	2.25154	0.0122
	Overall	0.334651	0.148880	2.24778	0.0123

Between Appraisers

Assessment Agreement

# Inspected	# Matched	Percent	95% CI
10	2	20.00	(2.52, 55.61)

Matched: All appraisers' assessments agree with each other.

Cohen's Kappa Statistics

You must have two appraisers and single trial per appraiser to compute kappa.

All Appraisers vs Standard

Assessment Agreement

# Inspected	# Matched	Percent	95% CI	
10	2	20.00	(2.52, 55.61)	

[#] Matched: All appraisers' assessments agree with the known standard.

Cohen's Kappa Statistics

Response	Карра	SE Kappa	Z	P(vs > 0)
High	0.441767	0.152551	2.89587	0.0019
Low	0.489076	0.154843	3.15852	0.0008
Medium	0.613095	0.147686	4.15134	0.0000
Overall	0.515810	0.108032	4.77463	0.0000

Attribute Agreement Analysis