

Binomial Process Capability

up

Become Future Fit

You will learn

Learn to perform Binomial Process Capability use it to take decisions

Level of Difficulty

Attribute Data

An external Audit firm checks the HR records of employees (new joinees) every month. They pick 35 samples/month.

After 2 years, sample data of verification and its results.

- Calculate the process capability of the process (Defective PPM)
- b) What is the probability that in the coming month sample of 35 records, we will have 34 correct?

Data Transformation

up

Become Future Fit

You will learn

When & how to use Data Transformation for Process Capability?

Box-Cox Transformation & Johnson Transformation

Level of Difficulty

Time Process Data

Data is collected for computing the capability from a lead time for process. Customer spec is 90 mins maximum.

Performing Pre-Checks in Minitab

Non-Normal Data

- Box-Cox Transformation
- Johnson Transformation

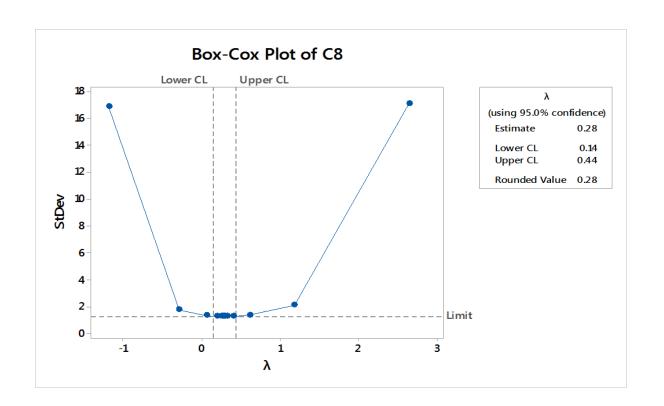
Box-Cox Data Transformation

Simple transformation of non-normal data using Lambda to a normal data.

Lambda (λ) value	Transformation
λ = 2	Y' = Y ²
$\lambda = 0.5$	$Y' = \sqrt{Y}$
$\lambda = 0$	Y' = In Y
$\lambda = -0.5$	$Y' = 1/(\sqrt{Y})$
$\lambda = -1$	Y' = 1 / Y

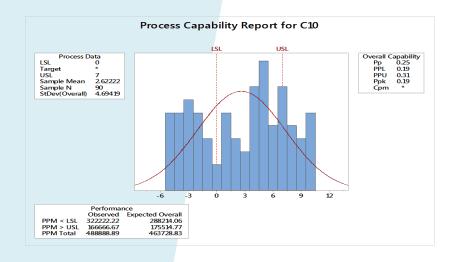
May not work in all scenarios

Depends on selection of Lambda value


Can't take negative values

Box Cox Transformation Process Capability

Box-Cox Transformation Plot



Johnson Data Transformation

- More robust than Box-Cox
 Transformation
- May not work in all scenarios
- Can take negative values
- Uses a family of transformation variables

Johnson Transformation Process Capability

Tips for Data Transformation

- Use Transformation functions cautiously
- Prefer to fix normality issue and run
 Normal Process Capability (Normal
 Distribution)
- Use Weibull Process Capability (Nonnormal distributions)

Process Capability Analysis

up

Become Future Fit

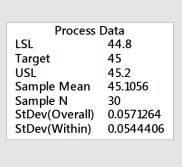
You will learn

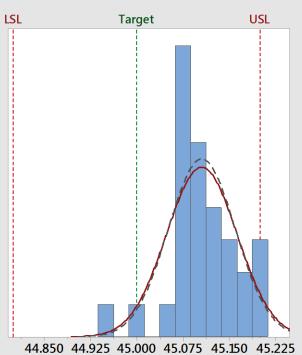
How to interpret the results of Process Capability Analysis?

Narrowing down on improvement strategies

Level of Difficulty

Interpreting the Minitab Results


30 data points have been collected of a process has been collected such that 2 data points are collected consecutively in every hour.


Process Specs are 44.8 & 45.2

target center of 45.0.

Process Capability Report for Dimension_1

Overall Within	
Overall C	apability
Pp	1.17
PPL	178
PPU	0.55
Ppk	
Cpm	0.55
Potential (With	nin) Capability
Ср	122
CPL	187
CPU	0.58
Cpk	0.58

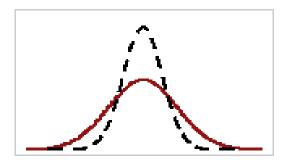
Performance				
Observed Expected Overall Expected Within				
PPM < LSL	0.00	0.04	0.01	
PPM > USL	33333.33	49176.29	41420.12	
PPM Total	33333.33	49176.33	41420.13	

Interpretation of Results

Visual analysis

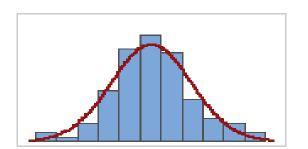
- Fit to normal
- Within & Overall Curves

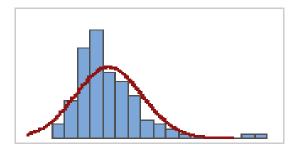
Numericals


- Cp & Cpk
- Pp & Ppk
- Cpk & Ppk

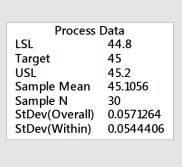
Within & Overall Curves

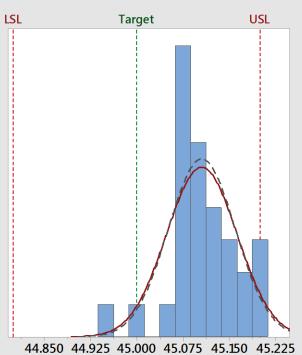
Visual Fit - Scenarios





Not very important when subgroup size =1


Fit to normal



Process Capability Report for Dimension_1

Overall Within	
Overall C	apability
Pp	1.17
PPL	178
PPU	0.55
Ppk	
Cpm	0.55
Potential (With	nin) Capability
Ср	122
CPL	187
CPU	0.58
Cpk	0.58

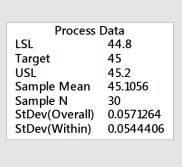
Performance				
Observed Expected Overall Expected Within				
PPM < LSL	0.00	0.04	0.01	
PPM > USL	33333.33	49176.29	41420.12	
PPM Total	33333.33	49176.33	41420.13	

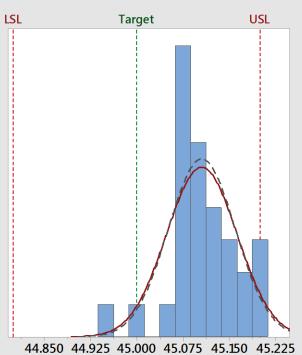
Process Capability Results

Observed Performance: Actual

Performance as per measured data

Expected Overall Performance:


Expected Performance over a period of time.


Expected Within Performance:

Potential for Improvement on long term if variation & centre issues are corrected.

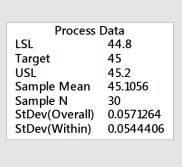
Process Capability Report for Dimension_1

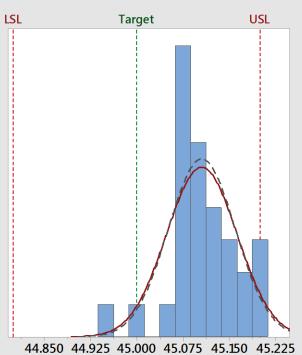
Overall Within	
Overall C	apability
Pp	1.17
PPL	178
PPU	0.55
Ppk	
Cpm	0.55
Potential (With	nin) Capability
Ср	122
CPL	187
CPU	0.58
Cpk	0.58

Performance				
Observed Expected Overall Expected Within				
PPM < LSL	0.00	0.04	0.01	
PPM > USL	33333.33	49176.29	41420.12	
PPM Total	33333.33	49176.33	41420.13	

Study Capability Indices

Cp, Cpk & Pp, Ppk Values


Compare Cpk & Ppk


Cpk - Ppk = Improvement
Potential

Focus on eliminating shifts and drifts

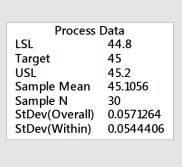
Process Capability Report for Dimension_1

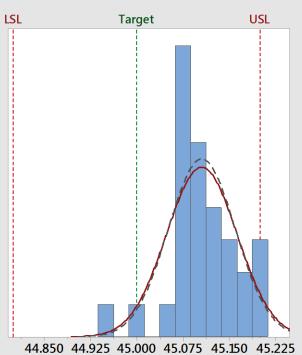
Overall Within	
Overall C	apability
Pp	1.17
PPL	178
PPU	0.55
Ppk	
Cpm	0.55
Potential (With	nin) Capability
Ср	122
CPL	187
CPU	0.58
Cpk	0.58

Performance				
Observed Expected Overall Expected Within				
PPM < LSL	0.00	0.04	0.01	
PPM > USL	33333.33	49176.29	41420.12	
PPM Total	33333.33	49176.33	41420.13	

Compare Indices

Cp ~ Cpk : Process Centred


Cp <> Cpk : Process Not Centred


Pp ~ Ppk : Process Centred

Pp <> Ppk : Process Not Centred

Process Capability Report for Dimension_1

Overall Within	
Overall C	apability
Pp	1.17
PPL	178
PPU	0.55
Ppk	
Cpm	0.55
Potential (With	nin) Capability
Ср	122
CPL	187
CPU	0.58
Cpk	0.58

Performance				
Observed Expected Overall Expected Within				
PPM < LSL	0.00	0.04	0.01	
PPM > USL	33333.33	49176.29	41420.12	
PPM Total	33333.33	49176.33	41420.13	

Improvement Strategies

- Baseline Performance has been established
- Practical Problem has been converted to Statistical Problem
- Improvement Strategies:
 - Shift the process center (Cpk)
 - Reduce Variation (Cp)
 - Reduce gap between Overall & Within

Process Capability Analysis

up

Become Future Fit

You will learn

How to perform Process Capability Analysis using Minitab

Level of Difficulty

Computing Process Capability for an accurate process

30 data points have been collected of a process has been collected such

that 2 data points are collected

consecutively in every hour.

Process Specs are 44.8 & 45.2 target center of 45.0.

Pre-Checks

- 1. Stability Check
- 2. Normality Check

Performing Pre-Checks in Minitab

Pre check in Minitab & go for new data set with stability

Performing Process Capability in Minitab

Minitab **

Process Capability in Minitab

Performing Six Pack Analysis in Minitab

Process Capability Six Pack in Minitab

Considerations

- Sub-grouping
- Spec & Boundaries
- Target Value
- Data Transformation
- Z-Benchmark

Process Capability Analysis in Minitab

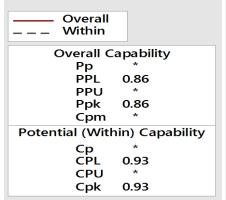
Continued in Next Lecture....

Sub-grouping

- Use correct sub-group size if data collection is in sub-groups
- 2. For Ex: If 2 samples are collected in each shift, then sub-group size is 2
- Data has to be arranged in chronological order if sub-grouping is followed
- If data is not collected in subgroups, assign sub-group size as 1

Spec & Boundaries

- Use only customer specifications
- If process doesn't have one side spec,
 then DON'T assume a value
- Boundary means the spec is hard.
 There cannot be any value beyond the spec. For Ex: USL Marks in Exam is
 100


Target Value

- Target Value refers to expected process center
- Only some processes have expected center value mentioned.
- If available, mention the value.
- Only when Target value is provided,
 Cpm will be calculated.

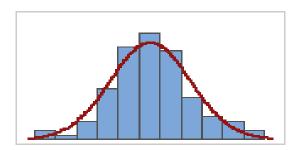
Z Benchmark

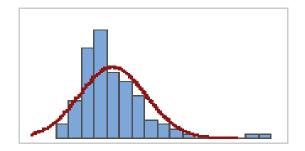
Z Bench is the Sigma Level of the process.

Interpretation of Results

Visual analysis

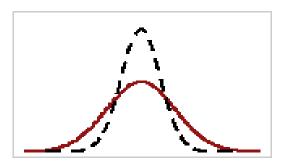
- Fit to normal
- Within & Overall Curves


Numericals


- Cp & Cpk
- Pp & Ppk
- Cpk & Ppk

Visual Fit - Scenarios

Fit to normal



Visual Fit - Scenarios

Within & Overall Curves

Not very important when subgroup size =1

Process Capability Results

Observed Performance: Actual

Performance as per measured data

Expected Overall Performance:

Expected Performance over a period of time.

Expected Within Performance:

Potential for Improvement on long term if variation & centre issues are corrected.

Compare Cpk & Ppk

Ppk - Cpk = Improvement
Potential

Focus on eliminating shifts and drifts

Compare Cp & Cpk

Cp ~ Cpk : Process Centred

Cp <> Cpk : Process Not Centred

Compare Pp & Ppk

Pp ~ Ppk : Process Centred

Pp <> Ppk : Process Not Centred

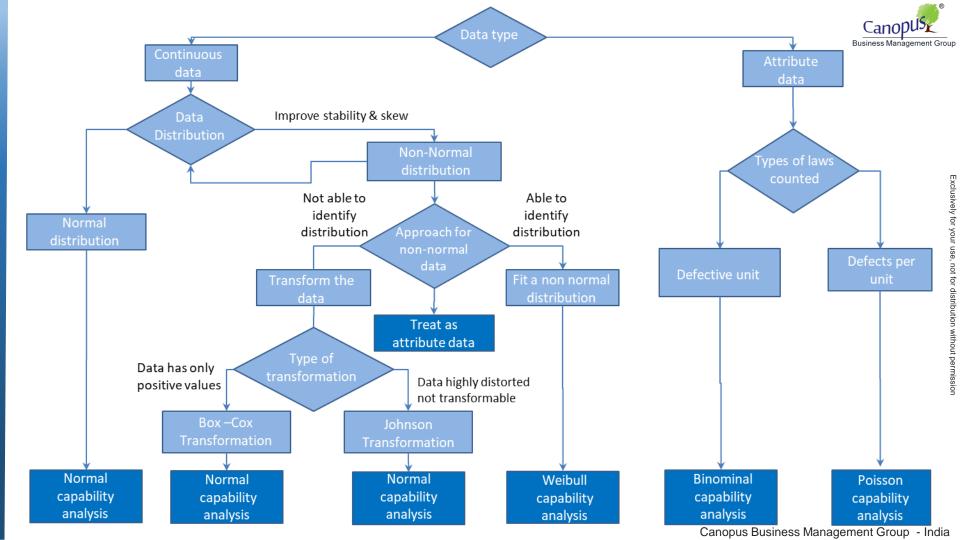
Process Capability Decision Tree

up

Become Future Fit

You will learn

How to select the right type of Process Capability Analysis?


Level of Difficulty

Process Capability

Decision Tree

Weibull Process Capability

up

Become Future Fit

You will learn

Learn to perform Weibull Process Capability & use it to take decisions

Level of Difficulty

Time Process Data

Data is collected for computing the capability from a lead time for process. Customer spec is 90 mins maximum.

Performing Pre-Checks in Minitab

Minitab **

Ignoring Nonnormality

What if we ignore non-normality use Normal Process Capability

Weibull Process Capability

Let's now use Weibull
Process Capability because
source data is 'Lead Time'

Performing Pre-Checks in Minitab

Minitab **